transformer_text_field
allennlp.data.fields.transformer_text_field
TransformerTextField¶
class TransformerTextField(Field[torch.Tensor]):
| def __init__(
| self,
| input_ids: Union[torch.Tensor, List[int]],
| token_type_ids: Optional[Union[torch.Tensor, List[int]]] = None,
| attention_mask: Optional[Union[torch.Tensor, List[int]]] = None,
| special_tokens_mask: Optional[Union[torch.Tensor, List[int]]] = None,
| offsets_mapping: Optional[Union[torch.Tensor, List[int]]] = None,
| padding_token_id: int = 0
| ) -> None
A TransformerTextField
is a collection of several tensors that are are a representation of text,
tokenized and ready to become input to a transformer.
The naming pattern of the tensors follows the pattern that's produced by the huggingface tokenizers, and expected by the huggingface transformers.
get_padding_lengths¶
class TransformerTextField(Field[torch.Tensor]):
| ...
| def get_padding_lengths(self) -> Dict[str, int]
as_tensor¶
class TransformerTextField(Field[torch.Tensor]):
| ...
| def as_tensor(
| self,
| padding_lengths: Dict[str, int]
| ) -> Dict[str, torch.Tensor]
empty_field¶
class TransformerTextField(Field[torch.Tensor]):
| ...
| def empty_field(self)
batch_tensors¶
class TransformerTextField(Field[torch.Tensor]):
| ...
| def batch_tensors(
| self,
| tensor_list: List[Dict[str, torch.Tensor]]
| ) -> Dict[str, torch.Tensor]
human_readable_repr¶
class TransformerTextField(Field[torch.Tensor]):
| ...
| def human_readable_repr(self) -> Dict[str, Any]