bimpm_matching
allennlp.modules.bimpm_matching
Multi-perspective matching layer
multi_perspective_match¶
def multi_perspective_match(
vector1: torch.Tensor,
vector2: torch.Tensor,
weight: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]
Calculate multi-perspective cosine matching between time-steps of vectors of the same length.
Parameters¶
- vector1 :
torch.Tensor
A tensor of shape(batch, seq_len, hidden_size)
- vector2 :
torch.Tensor
A tensor of shape(batch, seq_len or 1, hidden_size)
- weight :
torch.Tensor
A tensor of shape(num_perspectives, hidden_size)
Returns¶
torch.Tensor
:
Shape(batch, seq_len, 1)
.torch.Tensor
:
Shape(batch, seq_len, num_perspectives)
.
multi_perspective_match_pairwise¶
def multi_perspective_match_pairwise(
vector1: torch.Tensor,
vector2: torch.Tensor,
weight: torch.Tensor
) -> torch.Tensor
Calculate multi-perspective cosine matching between each time step of one vector and each time step of another vector.
Parameters¶
- vector1 :
torch.Tensor
A tensor of shape(batch, seq_len1, hidden_size)
- vector2 :
torch.Tensor
A tensor of shape(batch, seq_len2, hidden_size)
- weight :
torch.Tensor
A tensor of shape(num_perspectives, hidden_size)
Returns¶
torch.Tensor
:
A tensor of shape(batch, seq_len1, seq_len2, num_perspectives)
consisting multi-perspective matching results
BiMpmMatching¶
class BiMpmMatching(nn.Module, FromParams):
| def __init__(
| self,
| hidden_dim: int = 100,
| num_perspectives: int = 20,
| share_weights_between_directions: bool = True,
| is_forward: bool = None,
| with_full_match: bool = True,
| with_maxpool_match: bool = True,
| with_attentive_match: bool = True,
| with_max_attentive_match: bool = True
| ) -> None
This Module
implements the matching layer of BiMPM model described in Bilateral
Multi-Perspective Matching for Natural Language Sentences
by Zhiguo Wang et al., 2017.
Also please refer to the TensorFlow implementation and
PyTorch implementation.
Parameters¶
- hidden_dim :
int
, optional (default =100
)
The hidden dimension of the representations - num_perspectives :
int
, optional (default =20
)
The number of perspectives for matching - share_weights_between_directions :
bool
, optional (default =True
)
If True, share weight between matching from sentence1 to sentence2 and from sentence2 to sentence1, useful for non-symmetric tasks - is_forward :
bool
, optional (default =None
)
Whether the matching is for forward sequence or backward sequence, useful in finding last token in full matching. It can not be None if with_full_match is True. - with_full_match :
bool
, optional (default =True
)
If True, include full match - with_maxpool_match :
bool
, optional (default =True
)
If True, include max pool match - with_attentive_match :
bool
, optional (default =True
)
If True, include attentive match - with_max_attentive_match :
bool
, optional (default =True
)
If True, include max attentive match
get_output_dim¶
class BiMpmMatching(nn.Module, FromParams):
| ...
| def get_output_dim(self) -> int
forward¶
class BiMpmMatching(nn.Module, FromParams):
| ...
| def forward(
| self,
| context_1: torch.Tensor,
| mask_1: torch.BoolTensor,
| context_2: torch.Tensor,
| mask_2: torch.BoolTensor
| ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]
Given the forward (or backward) representations of sentence1 and sentence2, apply four bilateral matching functions between them in one direction.
Parameters¶
- context_1 :
torch.Tensor
Tensor of shape (batch_size, seq_len1, hidden_dim) representing the encoding of the first sentence. - mask_1 :
torch.BoolTensor
Boolean Tensor of shape (batch_size, seq_len1), indicating which positions in the first sentence are padding (0) and which are not (1). - context_2 :
torch.Tensor
Tensor of shape (batch_size, seq_len2, hidden_dim) representing the encoding of the second sentence. - mask_2 :
torch.BoolTensor
Boolean Tensor of shape (batch_size, seq_len2), indicating which positions in the second sentence are padding (0) and which are not (1).
Returns¶
Tuple[List[torch.Tensor], List[torch.Tensor]]
:
A tuple of matching vectors for the two sentences. Each of which is a list of matching vectors of shape (batch, seq_len, num_perspectives or 1)