boe_encoder
allennlp.modules.seq2vec_encoders.boe_encoder
BagOfEmbeddingsEncoder¶
@Seq2VecEncoder.register("boe")
@Seq2VecEncoder.register("bag_of_embeddings")
class BagOfEmbeddingsEncoder(Seq2VecEncoder):
| def __init__(self, embedding_dim: int, averaged: bool = False) -> None
A BagOfEmbeddingsEncoder
is a simple Seq2VecEncoder
which simply sums
the embeddings of a sequence across the time dimension. The input to this module is of shape
(batch_size, num_tokens, embedding_dim)
, and the output is of shape (batch_size, embedding_dim)
.
Registered as a Seq2VecEncoder
with name "bag_of_embeddings" and "boe".
Parameters¶
- embedding_dim :
int
This is the input dimension to the encoder. - averaged :
bool
, optional (default =False
)
IfTrue
, this module will average the embeddings across time, rather than simply summing (ie. we will divide the summed embeddings by the length of the sentence).
get_input_dim¶
class BagOfEmbeddingsEncoder(Seq2VecEncoder):
| ...
| def get_input_dim(self) -> int
get_output_dim¶
class BagOfEmbeddingsEncoder(Seq2VecEncoder):
| ...
| def get_output_dim(self) -> int
forward¶
class BagOfEmbeddingsEncoder(Seq2VecEncoder):
| ...
| def forward(
| self,
| tokens: torch.Tensor,
| mask: torch.BoolTensor = None
| )