softmax_loss
allennlp.modules.softmax_loss
SoftmaxLoss¶
class SoftmaxLoss(torch.nn.Module):
| def __init__(self, num_words: int, embedding_dim: int) -> None
Given some embeddings and some targets, applies a linear layer
to create logits over possible words and then returns the
negative log likelihood. Does not add a padding ID into the
vocabulary, and input targets
to forward
should not include
a padding ID.
forward¶
class SoftmaxLoss(torch.nn.Module):
| ...
| def forward(
| self,
| embeddings: torch.Tensor,
| targets: torch.Tensor
| ) -> torch.Tensor
Parameters¶
- embeddings :
torch.Tensor
A tensor of shape(sequence_length, embedding_dim)
- targets :
torch.Tensor
A tensor of shape(batch_size, )
Returns¶
- loss :
torch.FloatTensor
A scalar loss to be optimized.