Skip to content

evalb_bracketing_scorer

allennlp.training.metrics.evalb_bracketing_scorer

[SOURCE]


DEFAULT_EVALB_DIR

DEFAULT_EVALB_DIR = os.path.abspath(
    os.path.join(
        os.path.dirname(os.path.realpath(__file__)), os.pardir, o ...

EvalbBracketingScorer

@Metric.register("evalb")
class EvalbBracketingScorer(Metric):
 | def __init__(
 |     self,
 |     evalb_directory_path: str = DEFAULT_EVALB_DIR,
 |     evalb_param_filename: str = "COLLINS.prm",
 |     evalb_num_errors_to_kill: int = 10
 | ) -> None

This class uses the external EVALB software for computing a broad range of metrics on parse trees. Here, we use it to compute the Precision, Recall and F1 metrics. You can download the source for EVALB from here: https://nlp.cs.nyu.edu/evalb/.

Note that this software is 20 years old. In order to compile it on modern hardware, you may need to remove an include <malloc.h> statement in evalb.c before it will compile.

AllenNLP contains the EVALB software, but you will need to compile it yourself before using it because the binary it generates is system dependent. To build it, run make inside the allennlp/tools/EVALB directory.

Note that this metric reads and writes from disk quite a bit. You probably don't want to include it in your training loop; instead, you should calculate this on a validation set only.

Parameters

  • evalb_directory_path : str
    The directory containing the EVALB executable.
  • evalb_param_filename : str, optional (default = "COLLINS.prm")
    The relative name of the EVALB configuration file used when scoring the trees. By default, this uses the COLLINS.prm configuration file which comes with EVALB. This configuration ignores POS tags and some punctuation labels.
  • evalb_num_errors_to_kill : int, optional (default = "10")
    The number of errors to tolerate from EVALB before terminating evaluation.

__call__

class EvalbBracketingScorer(Metric):
 | ...
 | def __call__(
 |     self,
 |     predicted_trees: List[Tree],
 |     gold_trees: List[Tree]
 | ) -> None

Parameters

  • predicted_trees : List[Tree]
    A list of predicted NLTK Trees to compute score for.
  • gold_trees : List[Tree]
    A list of gold NLTK Trees to use as a reference.

get_metric

class EvalbBracketingScorer(Metric):
 | ...
 | def get_metric(self, reset: bool = False)

Returns

  • The average precision, recall and f1.

reset

class EvalbBracketingScorer(Metric):
 | ...
 | def reset(self)

compile_evalb

class EvalbBracketingScorer(Metric):
 | ...
 | @staticmethod
 | def compile_evalb(evalb_directory_path: str = DEFAULT_EVALB_DIR)

clean_evalb

class EvalbBracketingScorer(Metric):
 | ...
 | @staticmethod
 | def clean_evalb(evalb_directory_path: str = DEFAULT_EVALB_DIR)