mean_absolute_error
allennlp.training.metrics.mean_absolute_error
MeanAbsoluteError¶
@Metric.register("mean_absolute_error")
class MeanAbsoluteError(Metric):
| def __init__(self) -> None
This Metric
calculates the mean absolute error (MAE) between two tensors.
__call__¶
class MeanAbsoluteError(Metric):
| ...
| def __call__(
| self,
| predictions: torch.Tensor,
| gold_labels: torch.Tensor,
| mask: Optional[torch.BoolTensor] = None
| ) -> None
Parameters¶
- predictions :
torch.Tensor
A tensor of predictions of shape (batch_size, ...). - gold_labels :
torch.Tensor
A tensor of the same shape aspredictions
. - mask :
torch.BoolTensor
, optional (default =None
)
A tensor of the same shape aspredictions
.
get_metric¶
class MeanAbsoluteError(Metric):
| ...
| def get_metric(self, reset: bool = False) -> Dict[str, float]
Returns¶
- The accumulated mean absolute error.
reset¶
class MeanAbsoluteError(Metric):
| ...
| def reset(self) -> None