feedforward
allennlp.modules.feedforward
A feed-forward neural network.
FeedForward#
class FeedForward(torch.nn.Module,  FromParams):
 | def __init__(
 |     self,
 |     input_dim: int,
 |     num_layers: int,
 |     hidden_dims: Union[int, List[int]],
 |     activations: Union[Activation, List[Activation]],
 |     dropout: Union[float, List[float]] = 0.0
 | ) -> None
This Module is a feed-forward neural network, just a sequence of Linear layers with
activation functions in between.
Parameters
- input_dim : 
int
The dimensionality of the input. We assume the input has shape(batch_size, input_dim). - num_layers : 
int
The number ofLinearlayers to apply to the input. - hidden_dims : 
Union[int, List[int]]
The output dimension of each of theLinearlayers. If this is a singleint, we use it for allLinearlayers. If it is aList[int],len(hidden_dims)must benum_layers. - activations : 
Union[Activation, List[Activation]]
The activation function to use after eachLinearlayer. If this is a single function, we use it after allLinearlayers. If it is aList[Activation],len(activations)must benum_layers. Activation must have torch.nn.Module type. - dropout : 
Union[float, List[float]], optional (default =0.0)
If given, we will apply this amount of dropout after each layer. Semantics offloatversusList[float]is the same as with other parameters. 
Examples
FeedForward(124, 2, [64, 32], torch.nn.ReLU(), 0.2)
#> FeedForward(
#>   (_activations): ModuleList(
#>     (0): ReLU()
#>     (1): ReLU()
#>   )
#>   (_linear_layers): ModuleList(
#>     (0): Linear(in_features=124, out_features=64, bias=True)
#>     (1): Linear(in_features=64, out_features=32, bias=True)
#>   )
#>   (_dropout): ModuleList(
#>     (0): Dropout(p=0.2, inplace=False)
#>     (1): Dropout(p=0.2, inplace=False)
#>   )
#> )
get_output_dim#
class FeedForward(torch.nn.Module,  FromParams):
 | ...
 | def get_output_dim(self)
get_input_dim#
class FeedForward(torch.nn.Module,  FromParams):
 | ...
 | def get_input_dim(self)
forward#
class FeedForward(torch.nn.Module,  FromParams):
 | ...
 | def forward(self, inputs: torch.Tensor) -> torch.Tensor