compose_encoder
allennlp.modules.seq2seq_encoders.compose_encoder
ComposeEncoder#
@Seq2SeqEncoder.register("compose")
class ComposeEncoder(Seq2SeqEncoder):
| def __init__(self, encoders: List[Seq2SeqEncoder])
This class can be used to compose several encoders in sequence.
Among other things, this can be used to add a "pre-contextualizer" before a Seq2SeqEncoder.
Registered as a Seq2SeqEncoder
with name "compose".
Parameters
- encoders :
List[Seq2SeqEncoder]
A non-empty list of encoders to compose. The encoders must match in bidirectionality.
forward#
class ComposeEncoder(Seq2SeqEncoder):
| ...
| @overrides
| def forward(
| self,
| inputs: torch.Tensor,
| mask: torch.BoolTensor = None
| ) -> torch.Tensor
Parameters
- inputs :
torch.Tensor
A tensor of shape (batch_size, timesteps, input_dim) - mask :
torch.BoolTensor
, optional (default =None
)
A tensor of shape (batch_size, timesteps).
Returns
- A tensor computed by composing the sequence of encoders.
get_input_dim#
class ComposeEncoder(Seq2SeqEncoder):
| ...
| @overrides
| def get_input_dim(self) -> int
get_output_dim#
class ComposeEncoder(Seq2SeqEncoder):
| ...
| @overrides
| def get_output_dim(self) -> int
is_bidirectional#
class ComposeEncoder(Seq2SeqEncoder):
| ...
| @overrides
| def is_bidirectional(self) -> bool