token_characters_encoder
allennlp.modules.token_embedders.token_characters_encoder
TokenCharactersEncoder#
@TokenEmbedder.register("character_encoding")
class TokenCharactersEncoder(TokenEmbedder):
| def __init__(
| self,
| embedding: Embedding,
| encoder: Seq2VecEncoder,
| dropout: float = 0.0
| ) -> None
A TokenCharactersEncoder
takes the output of a
TokenCharactersIndexer
, which is a tensor of shape
(batch_size, num_tokens, num_characters), embeds the characters, runs a token-level encoder, and
returns the result, which is a tensor of shape (batch_size, num_tokens, encoding_dim). We also
optionally apply dropout after the token-level encoder.
We take the embedding and encoding modules as input, so this class is itself quite simple.
Registered as a TokenEmbedder
with name "character_encoding".
get_output_dim#
class TokenCharactersEncoder(TokenEmbedder):
| ...
| def get_output_dim(self) -> int
forward#
class TokenCharactersEncoder(TokenEmbedder):
| ...
| def forward(self, token_characters: torch.Tensor) -> torch.Tensor