auc
allennlp.training.metrics.auc
Auc#
@Metric.register("auc")
class Auc(Metric):
| def __init__(self, positive_label=1)
The AUC Metric measures the area under the receiver-operating characteristic (ROC) curve for binary classification problems.
__call__#
class Auc(Metric):
| ...
| def __call__(
| self,
| predictions: torch.Tensor,
| gold_labels: torch.Tensor,
| mask: Optional[torch.BoolTensor] = None
| )
Parameters
- predictions :
torch.Tensor
A one-dimensional tensor of prediction scores of shape (batch_size). - gold_labels :
torch.Tensor
A one-dimensional label tensor of shape (batch_size), with {1, 0} entries for positive and negative class. If it's not binary,positive_label
should be passed in the initialization. - mask :
torch.BoolTensor
, optional (default =None
)
A one-dimensional label tensor of shape (batch_size).
get_metric#
class Auc(Metric):
| ...
| def get_metric(self, reset: bool = False)
reset#
class Auc(Metric):
| ...
| @overrides
| def reset(self)