sequence_accuracy
allennlp.training.metrics.sequence_accuracy
SequenceAccuracy#
@Metric.register("sequence_accuracy")
class SequenceAccuracy(Metric):
| def __init__(self) -> None
Sequence Top-K accuracy. Assumes integer labels, with each item to be classified having a single correct class.
__call__#
class SequenceAccuracy(Metric):
| ...
| def __call__(
| self,
| predictions: torch.Tensor,
| gold_labels: torch.Tensor,
| mask: Optional[torch.BoolTensor] = None
| )
Parameters
- predictions :
torch.Tensor
A tensor of predictions of shape (batch_size, k, sequence_length). - gold_labels :
torch.Tensor
A tensor of integer class label of shape (batch_size, sequence_length). - mask :
torch.BoolTensor
, optional (default =None
)
A masking tensor the same size asgold_labels
.
get_metric#
class SequenceAccuracy(Metric):
| ...
| def get_metric(self, reset: bool = False)
Returns
- The accumulated accuracy.
reset#
class SequenceAccuracy(Metric):
| ...
| @overrides
| def reset(self)