max_pooling_span_extractor
allennlp.modules.span_extractors.max_pooling_span_extractor
MaxPoolingSpanExtractor¶
@SpanExtractor.register("max_pooling")
class MaxPoolingSpanExtractor(SpanExtractorWithSpanWidthEmbedding):
 | def __init__(
 |     self,
 |     input_dim: int,
 |     num_width_embeddings: int = None,
 |     span_width_embedding_dim: int = None,
 |     bucket_widths: bool = False
 | ) -> None
Represents spans through the application of a dimension-wise max-pooling operation. Given a span x_i, ..., x_j with i,j as span_start and span_end, each dimension d of the resulting span s is computed via s_d = max(x_id, ..., x_jd).
Elements masked-out by sequence_mask are ignored when max-pooling is computed. Span representations of masked out span_indices by span_mask are set to '0.'
Registered as a SpanExtractor with name "max_pooling".
Parameters¶
- input_dim : int
 The final dimension of thesequence_tensor.
- num_width_embeddings : int, optional (default =None)
 Specifies the number of buckets to use when representing span width features.
- span_width_embedding_dim : int, optional (default =None)
 The embedding size for the span_width features.
- bucket_widths : bool, optional (default =False)
 Whether to bucket the span widths into log-space buckets. IfFalse, the raw span widths are used.
Returns¶
- max_pooling_text_embeddings : torch.FloatTensor.
 A tensor of shape (batch_size, num_spans, input_dim), which each span representation is the result of a max-pooling operation.
get_output_dim¶
class MaxPoolingSpanExtractor(SpanExtractorWithSpanWidthEmbedding):
 | ...
 | def get_output_dim(self) -> int