allennlp.models.bimpm¶
BiMPM (Bilateral Multi-Perspective Matching) model implementation.
- 
class allennlp.models.bimpm.BiMpm(vocab: allennlp.data.vocabulary.Vocabulary, text_field_embedder: allennlp.modules.text_field_embedders.text_field_embedder.TextFieldEmbedder, matcher_word: allennlp.modules.bimpm_matching.BiMpmMatching, encoder1: allennlp.modules.seq2seq_encoders.seq2seq_encoder.Seq2SeqEncoder, matcher_forward1: allennlp.modules.bimpm_matching.BiMpmMatching, matcher_backward1: allennlp.modules.bimpm_matching.BiMpmMatching, encoder2: allennlp.modules.seq2seq_encoders.seq2seq_encoder.Seq2SeqEncoder, matcher_forward2: allennlp.modules.bimpm_matching.BiMpmMatching, matcher_backward2: allennlp.modules.bimpm_matching.BiMpmMatching, aggregator: allennlp.modules.seq2vec_encoders.seq2vec_encoder.Seq2VecEncoder, classifier_feedforward: allennlp.modules.feedforward.FeedForward, dropout: float = 0.1, initializer: allennlp.nn.initializers.InitializerApplicator = <allennlp.nn.initializers.InitializerApplicator object>, regularizer: Optional[allennlp.nn.regularizers.regularizer_applicator.RegularizerApplicator] = None)[source]¶
- Bases: - allennlp.models.model.Model- This - Modelimplements BiMPM model described in Bilateral Multi-Perspective Matching for Natural Language Sentences by Zhiguo Wang et al., 2017. Also please refer to the TensorFlow implementation and PyTorch implementation.- Parameters
- vocabVocabulary
- text_field_embedderTextFieldEmbedder
- Used to embed the - premiseand- hypothesis- TextFieldswe get as input to the model.
- matcher_wordBiMpmMatching
- BiMPM matching on the output of word embeddings of premise and hypothesis. 
- encoder1Seq2SeqEncoder
- First encoder layer for the premise and hypothesis 
- matcher_forward1BiMPMMatching
- BiMPM matching for the forward output of first encoder layer 
- matcher_backward1BiMPMMatching
- BiMPM matching for the backward output of first encoder layer 
- encoder2Seq2SeqEncoder
- Second encoder layer for the premise and hypothesis 
- matcher_forward2BiMPMMatching
- BiMPM matching for the forward output of second encoder layer 
- matcher_backward2BiMPMMatching
- BiMPM matching for the backward output of second encoder layer 
- aggregatorSeq2VecEncoder
- Aggregator of all BiMPM matching vectors 
- classifier_feedforwardFeedForward
- Fully connected layers for classification. 
- dropoutfloat, optional (default=0.1)
- Dropout percentage to use. 
- initializerInitializerApplicator, optional (default=``InitializerApplicator()``)
- If provided, will be used to initialize the model parameters. 
- regularizerRegularizerApplicator, optional (default=``None``)
- If provided, will be used to calculate the regularization penalty during training. 
 
- vocab
 - 
decode(self, output_dict: Dict[str, torch.Tensor]) → Dict[str, torch.Tensor][source]¶
- Converts indices to string labels, and adds a - "label"key to the result.
 - 
forward(self, premise: Dict[str, torch.LongTensor], hypothesis: Dict[str, torch.LongTensor], label: torch.LongTensor = None, metadata: List[Dict[str, Any]] = None) → Dict[str, torch.Tensor][source]¶
- Parameters
- premiseDict[str, torch.LongTensor]
- The premise from a - TextField
- hypothesisDict[str, torch.LongTensor]
- The hypothesis from a - TextField
- labeltorch.LongTensor, optional (default = None)
- The label for the pair of the premise and the hypothesis 
- metadataList[Dict[str, Any]], optional, (default = None)
- Additional information about the pair 
- Returns
- ——-
- An output dictionary consisting of:
- logitstorch.FloatTensor
- A tensor of shape - (batch_size, num_labels)representing unnormalised log probabilities of the entailment label.
- losstorch.FloatTensor, optional
- A scalar loss to be optimised. 
 
 
 - 
get_metrics(self, reset: bool = False) → Dict[str, float][source]¶
- Returns a dictionary of metrics. This method will be called by - allennlp.training.Trainerin order to compute and use model metrics for early stopping and model serialization. We return an empty dictionary here rather than raising as it is not required to implement metrics for a new model. A boolean reset parameter is passed, as frequently a metric accumulator will have some state which should be reset between epochs. This is also compatible with- Metrics should be populated during the call to ``forward`, with the- Metrichandling the accumulation of the metric until this method is called.